
1

Software Engineering Lectures

College of Basic Education

Computer Science Thrd3 Stage

Assistant Lecturer. Ban Jawad K.

What is Software?

2

The product that software professionals build and then support

over the long term.

Software encompasses: (1) instructions (computer programs)

that when executed provide desired features, function, and

performance; (2) data structures that enable the programs to

adequately store and manipulate information and (3)

documentation that describes the operation and use of the

programs.

Software products

• Generic products

• Stand-alone systems that are marketed and sold to any customer

who wishes to buy them.

• Examples – PC software such as editing, graphics programs,

project management tools; CAD software; software for specific

markets such as appointments systems for dentists.

• Customized products

• Software that is commissioned by a specific customer to meet

their own needs.

• Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

3

Why Software is Important?

• The economies of ALL developed nations are dependent on

software.

• More and more systems are software controlled (transportation,

medical, telecommunications, military, industrial, entertainment,)

• Software engineering is concerned with theories, methods and tools

for professional software development.

• Expenditure on software represents a

significant fraction of GNP in all developed countries.

Software costs

• Software costs often dominate computer system costs. The

costs of software on a PC are often greater than the hardware

cost.

• Software costs more to maintain than it does to develop. For

systems with a long life, maintenance costs may be several

times development costs.

• Software engineering is concerned with cost-effective software

development.

Features of Software?
• Its characteristics that make it different from other things human being

build.

Features of such logical system:

• Software is developed or engineered, it is not manufactured in the
classical sense which has quality problem.

• Software doesn't "wear out.” but it deteriorates (due to change). Hardware
has bathtub curve of failure rate (high failure rate in the beginning, then drop to

steady state, then cumulative effects of dust, vibration, abuse occurs).

• Although the industry is moving toward component-based construction
(e.g. standard screws and off-the-shelf integrated circuits), most
software continues to be custom-built. Modern reusable components
encapsulate data and processing into software parts to be reused by
different programs. E.g. graphical user interface, window, pull-down
menus in library etc.

6

Wear vs. Deterioration

7

Software Applications
• 1. System software: such as compilers, editors, file management utilities

• 2. Application software: stand-alone programs for specific needs.

• 3. Engineering/scientific software: Characterized by “number crunching”algorithms. such
as automotive stress analysis, molecular biology, orbital dynamics etc

• 4. Embedded software resides within a product or system. (key pad control of a
microwave oven, digital function of dashboard display in a car)

• 5. Product-line software focus on a limited marketplace to address mass consumer
market. (word processing, graphics, database management)

• 6. WebApps (Web applications) network centric software. As web 2.0 emerges, more
sophisticated computing environments is supported integrated with remote database and
business applications.

• 7. AI software uses non-numerical algorithm to solve complex problem. Robotics, expert
system, pattern recognition game playing 8

Software—New Categories

• Open world computing—pervasive, ubiquitous, distributed computing due to
wireless networking. How to allow mobile devices, personal computer,
enterprise system to communicate across vast network.

• Netsourcing—the Web as a computing engine. How to architect simple and
sophisticated applications to target end-users worldwide.

• Open source—”free” source code open to the computing community (a blessing,
but also a potential curse!)

• Also … (see Chapter 31)

• Data mining

• Grid computing

• Cognitive machines

• Software for nanotechnologies

These slides are designed to accompany Software Engineering: A
Practitioner’s Approach, 7/e (McGraw-Hill 2009). Slides copyright 2009 by

Roger Pressman.

9

The IEEE definition:

Software Engineering: (1) The application of a systematic,

disciplined, quantifiable approach to the development,

operation, and maintenance of software; that is, the

application of engineering to software. (2) The study of

approaches as in (1).

The seminal definition:

[Software engineering is] the establishment and use of

sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines.

Software Engineering Definition

Importance of Software Engineering

• More and more, individuals and society rely on advanced

software systems. We need to be able to produce reliable and

trustworthy systems economically and quickly.

• It is usually cheaper, in the long run, to use software

engineering methods and techniques for software systems

rather than just write the programs as if it was a personal

programming project. For most types of system, the majority of

costs are the costs of changing the software after it has gone

into use.

11

FAQ about software engineering

12

Question Answer

What is software? Computer programs, data structures and associated

documentation. Software products may be developed for

a particular customer or may be developed for a general

market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be

maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities

of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering. Software

engineering is part of this more general process.

Essential attributes of good software

13

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a

changing business environment.

Dependability and

security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources such

as memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

A Layered Technology

14

Software Engineering

a “quality” focus

process model

methods

tools

 Any engineering approach must rest on organizational commitment to quality which fosters a

continuous process improvement culture.

 Process layer as the foundation defines a framework with activities for effective delivery of

software engineering technology. Establish the context where products (model, data, report, and

forms) are produced, milestone are established, quality is ensured and change is managed.

 Method provides technical how-to’s for building software. It encompasses many tasks

including� communication, requirement analysis, design modeling, program construction, testing

and support.

 Tools provide automated or semi-automated support for the process and methods.

Software Process

• A process is a collection of activities, actions and tasks

that are performed when some work product is to be

created. It is not a rigid prescription for how to build

computer software. Rather, it is an adaptable approach

that enables the people doing the work to pick and choose

the appropriate set of work actions and tasks.

• Purpose of process is to deliver software in a timely

manner and with sufficient quality to satisfy those who

have sponsored its creation and those who will use it.

15

Five Activities of a Generic

Process framework

• Communication: communicate with customer to understand objectives and gather
requirements

• Planning: creates a “map” defines the work by describing the tasks, risks and
resources, work products and work schedule.

• Modeling: Create a “sketch”, what it looks like architecturally, how the
constituent parts fit together and other characteristics.

• Construction: code generation and the testing.

• Deployment: Delivered to the customer who evaluates the products and provides
feedback based on the evaluation.

• These five framework activities can be used to all software development
regardless of the application domain, size of the project, complexity of the efforts
etc, though the details will be different in each case.

• For many software projects, these framework activities are applied iteratively as
a project progresses. Each iteration produces a software increment that provides a
subset of overall software features and functionality.

16

Umbrella Activities

Complement the five process framework activities and help team manage and control
progress, quality, change, and risk.

• Software project tracking and control: assess progress against the plan and take
actions to maintain the schedule.

• Risk management: assesses risks that may affect the outcome and quality.

• Software quality assurance: defines and conduct activities to ensure quality.

• Technical reviews: assesses work products to uncover and remove errors before
going to the next activity.

• Measurement: define and collects process, project, and product measures to ensure
stakeholder’s needs are met.

• Software configuration management: manage the effects of change throughout the
software process.

• Reusability management: defines criteria for work product reuse and establishes
mechanism to achieve reusable components.

• Work product preparation and production: create work products such as models,
documents, logs, forms and lists.

17

Adapting a Process Model

The process should be agile and adaptable to problems. Process adopted
for one project might be significantly different than a process adopted from
another project. (to the problem, the project, the team, organizational
culture). Among the differences are:

•the overall flow of activities, actions, and tasks and the interdependencies
among them

•the degree to which actions and tasks are defined within each framework
activity

•the degree to which work products are identified and required

•the manner which quality assurance activities are applied

•the manner in which project tracking and control activities are applied

•the overall degree of detail and rigor with which the process is described

•the degree to which the customer and other stakeholders are involved with
the project

•the level of autonomy given to the software team

•the degree to which team organization and roles are prescribed

18

Prescriptive and Agile

Process Models

•The prescriptive process models stress detailed definition,
identification, and application of process activates and tasks. Intent is
to improve system quality, make projects more manageable, make
delivery dates and costs more predictable, and guide teams of
software engineers as they perform the work required to build a
system.

•Unfortunately, there have been times when these objectives were
not achieved. If prescriptive models are applied dogmatically and
without adaptation, they can increase the level of bureaucracy.

•Agile process models emphasize project “agility” and follow a set
of principles that lead to a more informal approach to software
process. It emphasizes maneuverability and adaptability. It is
particularly useful when Web applications are engineered.

19

The Essence of Practice

• How does the practice of software engineering fit in the

process activities mentioned above? Namely,

communication, planning, modeling, construction and

deployment.

• George Polya outlines the essence of problem solving,

suggests:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality

assurance).

20

Understand the Problem

• Who has a stake in the solution to the problem?
That is, who are the stakeholders?

• What are the unknowns? What data, functions, and
features are required to properly solve the problem?

• Can the problem be compartmentalized? Is it
possible to represent smaller problems that may be
easier to understand?

• Can the problem be represented graphically? Can
an analysis model be created?

21

Plan the Solution

• Have you seen similar problems before? Are there patterns

that are recognizable in a potential solution? Is there existing

software that implements the data, functions, and features that

are required?

• Has a similar problem been solved? If so, are elements of the

solution reusable?

• Can subproblems be defined? If so, are solutions readily

apparent for the subproblems?

• Can you represent a solution in a manner that leads to
effective implementation? Can a design model be created?

22

Carry Out the Plan

• Does the solutions conform to the plan? Is source

code traceable to the design model?

• Is each component part of the solution provably
correct? Has the design and code been reviewed, or

better, have correctness proofs been applied to

algorithm?

23

Examine the Result

• Is it possible to test each component part of the
solution? Has a reasonable testing strategy been

implemented?

• Does the solution produce results that conform to
the data, functions, and features that are required?
Has the software been validated against all

stakeholder requirements?

24

Hooker’s General Principles for Software

Engineering Practice: important underlying law

Help you establish mind-set for solid software engineering

practice (David Hooker 96).

•1: The Reason It All Exists: provide values to users

•2: KISS (Keep It Simple, Stupid! As simple as possible)

•3: Maintain the Vision (otherwise, incompatible design)

•4: What You Produce, Others Will Consume (code with concern for

those that must maintain and extend the system)

•5: Be Open to the Future (never design yourself into a corner as

specification and hardware changes)

•6: Plan Ahead for Reuse

•7: Think! Place clear complete thought before action produces better
results.

25

Software Myths
Erroneous beliefs about software and the process that is

used to build it.

•Affect managers, customers (and other non-technical

stakeholders) and practitioners

•Are believable because they often have elements of

truth,

but …

•Invariably lead to bad decisions,

therefore …

•Insist on reality as you navigate your way through

software engineering
26

Software Myths Examples
• Myth 1: Once we write the program and get it to work, our job is done.

• Reality: the sooner you begin writing code, the longer it will take you to get done. 60% to 80%

of all efforts are spent after software is delivered to the customer for the first time.

• Myth 2: Until I get the program running, I have no way of assessing its quality.

• Reality: technical review are a quality filter that can be used to find certain classes of software

defects from the inception of a project.

• Myth 3: software engineering will make us create voluminous and unnecessary documentation

and will invariably slow us down.

• Reality: it is not about creating documents. It is about creating a quality product. Better quality

leads to a reduced rework. Reduced work results in faster delivery times.

• Many people recognize the fallacy of the myths. Regrettably, habitual attitudes and

methods foster poor management and technical practices, even when reality dictates a

better approach.
27

How It all Starts

• SafeHome:

• Every software project is precipitated by some

business need—
• the need to correct a defect in an existing application;

• the need to the need to adapt a ‘legacy system’ to a changing

business environment;

• the need to extend the functions and features of an existing

application, or

• the need to create a new product, service, or system.

28

Case studies

• A personal insulin pump

• An embedded system in an insulin pump used by diabetics to

maintain blood glucose control.

• A mental health case patient management system

• A system used to maintain records of people receiving care for

mental health problems.

• A wilderness weather station

• A data collection system that collects data about weather

conditions in remote areas.

29

Insulin pump control system

• Collects data from a blood sugar sensor and calculates the

amount of insulin required to be injected.

• Calculation based on the rate of change of blood sugar levels.

• Sends signals to a micro-pump to deliver the correct dose of

insulin.

• Safety-critical system as low blood sugars can lead to brain

malfunctioning, coma and death; high-blood sugar levels have

long-term consequences such as eye and kidney damage.

30

Insulin pump hardware

architecture

31

Activity model of the insulin

pump

32

Essential high-level

requirements

• The system shall be available to deliver insulin when required.

• The system shall perform reliably and deliver the correct

amount of insulin to counteract the current level of blood sugar.

• The system must therefore be designed and implemented to

ensure that the system always meets these requirements.

33

A patient information system for

mental health care

• A patient information system to support mental health care is a

medical information system that maintains information about

patients suffering from mental health problems and the

treatments that they have received.

• Most mental health patients do not require dedicated hospital

treatment but need to attend specialist clinics regularly where

they can meet a doctor who has detailed knowledge of their

problems.

• To make it easier for patients to attend, these clinics are not just

run in hospitals. They may also be held in local medical

practices or community centres.

34

MHC-PMS

• The MHC-PMS (Mental Health Care-Patient Management

System) is an information system that is intended for use in

clinics.

• It makes use of a centralized database of patient information

but has also been designed to run on a PC, so that it may be

accessed and used from sites that do not have secure network

connectivity.

• When the local systems have secure network access, they use

patient information in the database but they can download and

use local copies of patient records when they are disconnected.

35

MHC-PMS goals

• To generate management information that allows health service

managers to assess performance against local and government

targets.

• To provide medical staff with timely information to support the

treatment of patients.

36

The organization of the MHC-PMS

37

MHC-PMS key features
• Individual care management

• Clinicians can create records for patients, edit the information in the
system, view patient history, etc. The system supports data
summaries so that doctors can quickly learn about the key problems
and treatments that have been prescribed.

• Patient monitoring

• The system monitors the records of patients that are involved in
treatment and issues warnings if possible problems are detected.

• Administrative reporting

• The system generates monthly management reports showing the
number of patients treated at each clinic, the number of patients who
have entered and left the care system, number of patients sectioned,
the drugs prescribed and their costs, etc.

38

MHC-PMS concerns
• Privacy

• It is essential that patient information is confidential and is never

disclosed to anyone apart from authorised medical staff and the

patient themselves.

• Safety

• Some mental illnesses cause patients to become suicidal or a

danger to other people. Wherever possible, the system should

warn medical staff about potentially suicidal or dangerous

patients.

• The system must be available when needed otherwise safety may

be compromised and it may be impossible to prescribe the correct

medication to patients.

39

Wilderness weather station
• The government of a country with large areas of wilderness

decides to deploy several hundred weather stations in remote
areas.

• Weather stations collect data from a set of instruments that
measure temperature and pressure, sunshine, rainfall, wind
speed and wind direction.

• The weather station includes a number of instruments that
measure weather parameters such as the wind speed and direction,
the ground and air temperatures, the barometric pressure and the
rainfall over a 24-hour period. Each of these instruments is
controlled by a software system that takes parameter readings
periodically and manages the data collected from the instruments.

•

40

The weather station’s

environment

41

Weather information system
• The weather station system

• This is responsible for collecting weather data, carrying out some
initial data processing and transmitting it to the data management
system.

• The data management and archiving system

• This system collects the data from all of the wilderness weather
stations, carries out data processing and analysis and archives the
data.

• The station maintenance system

• This system can communicate by satellite with all wilderness weather
stations to monitor the health of these systems and provide reports of
problems.

42

Additional software

functionality
• Monitor the instruments, power and communication hardware

and report faults to the management system.

• Manage the system power, ensuring that batteries are charged

whenever the environmental conditions permit but also that

generators are shut down in potentially damaging weather

conditions, such as high wind.

• Support dynamic reconfiguration where parts of the software

are replaced with new versions and where backup instruments

are switched into the system in the event of system failure.

43

